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Elimination of Vector Parasites in
Element Maxwell Solutions
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Finite

Astract —The vector parasite problem is studied in the context of
finite element solutions of Maxwell’s equations for driven boundary-value
problems. An expanded weak form is introduced which combines the

divergence equation with the conventional weak form of the double-curl
equation. This new form is related to penalty methods where the penalty
or weighting factor varies with the dielectric constant. The resulting
algebraic system is identical to the Galerkin-Helmholts operator on

homogeneous subregions. Normal and tangential boundary conditions

arise in terms of the divergence and curl of the field on the boundary.

Computational results show the occurrence of two distinct types of

parasitic modes in driven problems and their elimination with the new

formulation. Practical observations concerning the conditions which
provoke spurious modes in these problems are reported.

Spurious solutions also arise tkom improper or unphysical boundary
conditions, and the importance of careful specification of boundary-value
problems is illustrated. Most conceptual difficulties with boundary con-
ditions per se are removed when hybrid methods are used to couple the
interior finite element solution to the exterior problem, which focuses
attention on the physics of the source distribution.

I. INTRODUCTION

THE occurrence of spurious computational modes in fi-
~ nite element (FEM) vector wave equation solutions has

been known for some time [1], [2] and suppression of such
erroneous calculations is still a subject of great interest [3],
[4]. The, majority of research to date on parasitic modes has
been in the context of eigenvalue problems; hence, the
notion of computing nonphysical solutions has been closely
tied to modal analysis. The most consistently noted feature
of these fictitious solutions has been their divergent nature
in cases where the physical solution is completely solenoidal.
Additional vector parasites have been reported with wave-
lengths at or near the mesh scale [5].

Reports of spurious solutions in vector boundaryhalue
problems, on the other hand, have been sparse; thus FEM
formulations for driven problems have largely, been per-
ceived to be free of these computational difficulties. In fact,
this presumed immunity of driven problems has been sug-
gested as a possible remedy to the eigenvalue dilemma [61,
[7]. Recently, however, Crowley et al. [81, Pinchuk et al. [9],
and Wong and Cendes [101, [111 have shown that careful
selection of the forcing term can lead to completely erro-
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neous double-curl FEM computations for some simple
boundary value problems. Although our earlier double-curl
FEM computations [12], [13] did not reveal any degradations
that could be attributable to nonphysical solutions, the in-
sightful comments by Crowley and Silvester [14] plus the
general lack of studies on spurious vector components of
FEM solutions to boundary-value problems have motivated
us to investigate this issue more closely.

The traditional approaches to removing spurious vector
modes have been classified as (1) those which modify the
FEM basis and (2) those which modify the FEM functional
or weak form. Examples of modifications of the basis can be
found in [8], [15], and [16]. Several strategies exist including
forcing the basis to have exactly zero divergence. To achieve
zero divergence, special care is required to guarantee the
continuity of h” c*E at interelement boundaries as well as on
element interiors, Otherwise the divergence of the basis
vanishes at best in the weak sense as is the case for “edge
elements” [17]. We have investigated the importance of
normal field continuity in inhomogeneous calculations [18]
and have concluded that strong enforcement (as can be
achieved with the bases used here) produces solutions with
improved accuracy, especially near dielectric interfaces, rela-
tive to those produced with edge elements.

Modification of the FEM functional in order to remove
spurious solutions has been associated with the so-called
penalty method [19], [201. In the present context, this amounts
to adding a weighted divergence equation V“ ●“E = O to the
double-curl equation. In weighted residual or variational
formulations the cost of divergence is then “penalized” by
using a large weight. In terms of the spectrum of the dis-
cretized matrix equation, the penalty factor is perceived to
shift the eigenvalues out of the range of interest [21], [22],
thus eliminating the effects of divergent modes. The key to
success with the penalty method has been in the choice of
the correct penalty factor—values too smali or too large
cause (or do not eliminate) unacceptable results. Unfortu-
nately, the choice of a suitable penalty factor has tended to
be problem-specific and no systematic approach or rationale
for selecting this parameter for general problems has been
put forth to date.

The strategy that we propose for eliminating spurious
computational modes in vector FEM boundary-value prob-
lems is to modify the weak form of the governing vector
equation in a manner closely related to the penalty term
alteration discussed above. However, rather than leaving the
penalty factor arbitrary and problem-dependent, we pre-
scribe a weak form which in effect reduces the algebraic
double-curl operator to a Laplacian on homogeneous subre-
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gions. We have demonstrated the importance of the resulting
Helmholtz structure by analyzing 2-D dispersion relations
arising from both finite-difference and finite element dis-
cretizations of the Maxwell equations on homogeneous, regu-
lar meshes. As we show in [23] the Hehnholtz algebra has
monotonic dispersion curves which mimic their analytic
counterparts such that proper specification of physical
boundary conditions ensures suppression of spurious “diver-
gence” modes whereas the double-curl and penalty algebras

physical sources exist, (1/ iaJK)fi X (V X E), or equivalently
ii X H, is continuous and therefore the boundary integral
vanishes; while at sources on the interior, the discontinuity in
i X H is replaced by physical current J. At outer boundary
nodes, either the exterior solution must be coupled to fi X H

or else the problem terminated as a boundary value problem

by specification of i? X E, 8 X H, or an equivalent current.
Expansion of (2) in the basis ~, leads to the Galerkin weak

form AiiEj = Ri, in which A comprises complex 3 x 3 subma-

have double-valued dispersion surfaces such that the synthe- trices -
,,

A,j = (3)

sis of physical and spurious modes is unavoidable in prob-
lems driven by physically correct boundary conditions.

Herein, we qualitatively confirm these idealized dispersion
analyses in the practical context of computing FEM solutions
to inhomogeneous boundary-value problems on irregular ge-
ometries. Specifically, we demonstrate the presence of the
two predicted vector parasites [23] in our original formula-
tion [12] and their removal with the proposed weak-form
modification. In addition we illustrate the introduction of
spurious solutions through improperly posed boundary con-
ditions, which in subtle ways can dictate unphysical behavior
by themselves.

Note that the double-curl identity V X V X E = – V2E +
V(V. E) is commonly invoked along with the condition V“ E

= O to convert (1) to the Helmholtz equation on homoge-
neous regions; however, the derived algebraic form (3) lacks
the crucial divergence information and therefore does not
display the conventional Galerkin–Helmholtz structure.

The modified weak form introduced here is based on the
expanded PDE

‘x(+vxE)-v(tiv”’*E)+io’*E=O“a)
The spatial discretization is handled by using the method of

weighted residuals:

II. THE EXPANDED WEAK FORM

Our original formulation for vector boundary-value FEM
solutions [12] proceeds directly from the double-curl equa-
tion

‘x(+vxE)+i@’*E=O‘1)
for the electric field, where .s” = ● + iu/~ is the complex
permittivity. The weak form of (1) which we have used is

((+vxE)xvo1)+(i@E*E4i)

where ( ) and $ indicate integration over the problem
domain and boundary, respectively, and ~, are the conven-
tional linear or bilinear basis functions associated with scalar
FEM formulations. At interior element boundaries where no

(oLvx(+vxE))-(’iv(*v”
+ (i~~*E@,) = O (4b)

where ( ), ~, and @i are defined as in (2). Use of the
identities

-(v’ix(*vxE))
(( 1

(t)iv ))@—V. E*E . jj y&( Vw*E)@, ds
if.opt*

leads to the associated weak form:

(4C)

(4d)

( )(J- (VXE) XV($l +
1 )—(VCe*E)V@i +(itits*E@l)

itip if.op~*

$

1 V, E*E
—_— —fix(Vx E)@tds+@im~lds (5)

itip
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assuming continuity of V“ c*E at interior element bound-
aries. Note that the weak form (2) displays only V X E as the
natural boundary condition; ideally the double-curl equation
guarantees the condition V“ E = O, although as demonstrated
here and in [23] this is not realized numerically due to
parasites, The expanded weak form (5) displays both V X E
and V“ E*E as natural boundary conditions. As will be shown
in the following sections, the process of specifying boundary
conditions for (5) involves only physical reasoning whereas
the use of (2) relies on the removal of unpredictable spurious
behavior which depends fundamentally on the mesh spacing.

Adopting a Galerkin-style expansion for E in terms of the
scalar basis dJi as above produces the same algebraic form
AijEj = Ri ~;h A,j modified as

Aij =

Alon.,

397

h x v~j will be zero on the exterior boundary). It follows

that the off-diagonal terms in A~j vanish unless both i and j
are bounda~ nodes. In effect, the expanded weak form (5)
produces a Galerkin-Helmholtz algebraic form on the inte-
rior:

with modifications at the boundaries as expressed in (5)
which allow the curl and divergence of the field to appear as
natural boundary conditions.

When numerical quadrature is used, the curl theorem
does not apply exactly nevertheless we obtain the analogous

((1 Wj Wi Wj a4i
— –——+——
imp ax ay. ay ax ))

(-(1 d~j af$i + Wj adi

imp ax ax a2 a2

a~j a~i
+——

ay ay ))
+( if3E*@i@j)

the diagonal terms of (6) may be recognized as a
conventional Galerkin rendering of the Helmholtz equation
for the three scalar components of E, separately. Further,
the off-diagonal terms uarzish on the interior of homoge-
neous subregions, leaving only the Helmholtz operator which
has the spurious-mode-resistant properties detailed in [23].
This can be seen as follows. First, note that the off-diagonals
are the components of ( V+i X V@j). The contribution to this

integral over a single element, ( Y, may be integrated by
parts as follows:

(v~i ‘V+j)e=( v ‘(@iv@j))’ ‘( (Vx ‘+j)d~)e. (7)

The integrand of the last term vanishes identically at all
points on the. interior of conventional elements. The surviv-
ing right-side term may be converted to a boundary integral
by the curl theorem, the result of which is

(v@i X V@j)e ‘$eh X (oiv~j) ds. (8)

For conventional Co elements, both @i and its tangential
derivatives are continuous at interior element boundaries;
therefore on assembly (summation over all elements) only
the integrals on exterior boundary segments survive cancella-
tion:

(v#i X V+j) ‘$fi X (+iv~j) ds. (9)

Inspection of (9) reveals that the boundaw integral vanishes
if either node i or i is an interior node (since either 4; or

(-(1 fMj Wi ~ a4j w+

imp ax a2 a.z ax ))

(-1iwp

a,tij a~i + a~j a4’t

ay a2 a.z ay ))

(6)

result

[v@i X V@j] ‘@ X (@iV@j)ds + ~j (11)

where [ ] is the quadrature approximation to ( ), and &ij is
the quadrature error:

4j= [v ‘(@ivOj)] ‘( ‘X(+iv+j)) . (12)

Irrespective of quadrature, all row and column sums of the
off-diagonal terms in Aij vanish, a consequence of the prop-
erty z~t = 1 which holds at all points in simple elements.

Finally, we obtain~he discrete energy balance as in [12] by
multiplying (5) by El (complex conjugate of Ei) and sum-
ming. The result is

(

(V. ~*E)(,V@ + (V XE)(VX@ Eofi
+ i06*—

2imp~* 2iwp 2 )

=$(%)”’ds+$(v;:y”’ds(13)
The real part of (13) corresponding to the time-averaged
component of the power balance is

(a~)+Re($(+)fids++(v;~”’ds)=o.

(14)

This is unchanged from its original form when either V. 6*E
or E. ii vanishes on the boundary. Additional terms appear
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(a)

Fig. 1. (a) A cylinder (R= 25 cm) split into two regions having differ-
ent complex wavenumbers. The computational FEM mesh is shown. (b)
A smaller off-center cylinder (a= 10 cm) embedded in a larger cylinder
(R= 25 cm). Different complex wa~enumbers are used to characterize
the two regions. The computational FEM mesh is shown.

in the imaginary part of (13) (the reactive power balance) as
follows:

III. RESULTS

This section contains results for 2-D boundary-value and
hybrid problems where spurious solutions appear when (2) is
used, but are removed in the case where (5) governs. Code
validations of our earlier formulation involved a test problem
consisting of concentric cylinders of dissimilar media excited
with a uniform H imposed at the outer boundary. While we
have yet to find any parasitic solutions with our original
formulation in this case, it is a simple boundary-value prob-
lem which involves only one radial mode and, in the termi-
nology of Crowley and Silvester [14], such an excitation is
probably orthogonal to potentially spurious modes; hence
they may not appear as our numerical experiments, to date,
have confirmed.

Two variants on this geometry, shown in Fig. 1, are now
studied. As before, a uniform H is imposed at the outer
cylinder boundaw, but these geometries, in general, excite
all radial and circumferential modes; hence they are better
benchmark problems for studying corrupted solutions. Fur-
ther, by examining a wide range of electrical properties in
the two regions, the effects of exciting various weighted

— = 1.00 E-0[) — - 1. 00E+OO

_ - 1.00E+OO = 1. 00E+OO

(a)

Fig. 2. (a) Benchmark solution for

(b)

the split cylinder case (Fig. l(a))
where k ~OP= (2.08, 20.53) and k&,Om = (0.074, 0.0). Vector plots of
Re (E) (top) and Ire(E) (bottom) are shown. Vector length is propor-
tional to strength (max scaled to unity). (b) Benchmark solution for the
off-center cylinder case (Fig. l(b)) where k ~nncr= (2000,0.0) and k&e,
= (196.1.39.22). Vector dots of Re (E) (top) and Im (E) (bottom) are
shown. Vector” length is proportional to strength (max scaled to unity).

combinations of the modes can be investigated. Because the
geometries are not amenable to analytical bounda~-value
solution, a reference standard is derived by first numerically
solving for H, followed by subsequent Galerkin treatment of
V X H = – ioe*E to produce E [24]. Since H is computed
with a scalar Helmholtz equation, it can be presumed free of
spurious modes of the type investigated herein. Further, E is
obtained by curling the H solution, which also guarantees
that no irrotational components will exist; hence, computa-
tion of E in this fashion can be regarded as only limited in
its accuracy by the resolution of the mesh.

Parts (a) and (b) of Fig. 2 show sample solutions of E

computed in this “benchmark” manner on the geometries in
Fig. l(a) and (b), respectively. When (2) is used, however, the
FEM solution can be severely corrupted. The spurious solu-
tions shown in Fig. 3 are representative of some of the more
shocking results that we have obtained solving (2) on the
geometries in Fig. 1. The solutions in Fig. 3 illustrate the
occurrence of two apparently different types of parasites.
The first, shown in Fig, 3(a), is well resolved and exhibits
distinct divergence. The second, shown in Fig. 3(b), appears
as node-to-node oscillations at the mesh scale, suggesting the
presence of unresolved waves at or near the mesh cutoff
point (i.e., A = 2Ax). These two classes of parasitic solutions
are consistent with those reported by others in the eigen-
value problem context [5] and in a companion paper [23]
have been referred to as type A (i.e., Fig. 3(a)) and type B
(i.e., Fig. 3(b)), respectively.
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= 1 00 E~l10 = 1. OOE+OO

_ = I.00E+OO _ = 1.00E+OO = 1. OOE+OO — - 1.00E+OO

(a) (b)

Fig. 3. (a) Same as Fig. 2(a) except that FEM solution using the
conventional double-curl formulation (ea. (2)) governs. The observed
parasite is well resolvedand showsclear d~vergen~behavior. (b) Sameas
Fig, 2(b) except that FEM solution using the conventional double-curl
formulation (eq. (2)) governs.The observed parasite is poorly resolved,
showing node-to-node oscillations.

The factors which appear to determine the severity of the
corruptions in FEM solutions via (2) are the magnitude and
phase of the complex-valued wavenumbers of the respective
media and the size of their ratio. An extensive search of the
parameter space has been conducted where the ranges over
which these factors have been varied are Ik 21A x 2 = 10’5 ~
0.5, cr/ti~=O a20, and lk21o.t.r/ lk21inner = 0.1 ~ 10. Gen-
erally, the most prognostic indicator has been the magnitude;
however, the size ratio is also important. If [k 21Ax2 >0.02

– 0.5+ 2),and the size ratio is near unity (1k 2!outer / I k 2 [ inner —

spurious solutions are less likely to be computed with (2) and
their occurrence is essentially independent of the phase
angles of the k 2’s. However, the smaller\ larger the magni-

tudes of k2Ax2, the tighter/looser the restrictions become
on size ratio in order to maintain insensitivity to phase, For
example, if’ lk21Ax 2 = 0,005, a size ratio of unity is needed.
When the size ratio is broadened (e.g. Ik 210Ut@,/ Ik‘1 in..r = 5),
a reduction in spurious effects is observed as the phase angle
is increased (removal or near removal requiring u/tie > 1)
provided the magnitude requirements are met. In the limit of
size ratio approaching unity and a vanishingly small phase
angle, the geometry collapses to a homogeneous region which
excites a single mode that is apparently orthogonal to the
parasitic modes, While it is important to recognize that these
observations are strictly problem-dependent, they have obvi-
ous practical relevance and qualitatively agree with the ideal-
ized dispersion analyses of real-valued wavenumbers pre-
sented in [23].

(a) (b)

Fig. 4. (a) Same as Fig. 2(a) except that FEM solution using the
extended weak form (eq. (5)) governs, The well-resolved divergent
parasite of Fig. 3(a) is removed. E. ii = O is explicitly enforced at the
outer boundary. The solution is essentially identical to the benchmark
solution of Fig. 2(a). (b) Same as Fig. 2(b) except that FEM solution
using the extended weak form (eq. (5)) governs. The node-to-node
oscillatory parasite of Fig. 3(b) is removed. The homogeneous natural
boundary condition V. c*E = O is applied at the outer boundary. The
solution is essentially identical to the benchmark solution of Fig. 2(b).

Fortunately, desirable behavior results from the use of the
extended weak form (5) regardless of whether parasitic solu-
tions arise in (2) or not; hence, one need not fully character-
ize the occurrence of corruptions in (2) with respect to
parameter space, k 2Ax 2. Since parasites can be found to
occur in (2) for some boundary-value problems, its general
use is suspect and the extended form (5) is always preferable.
As shown in Fig. 4, the use of the extended weak form
effectively eliminates both types of corruptions observed in
Fig. 3, and the direct vector E solution now agrees with the
parasite-free calculations of Fig. 2. This removal of parasitic
solutions consistently occurred by invoking (5) for all of the
combinations of parameters that we have investigated to
date.

It is interesting to note that in Fig. 4(b) the homogeneous
natural boundav condition V. c*E = O is applied, whereas in
Fig. 4(a) this is insufficient to produce the desired solution
and a stronger condition, E” i? = O, must be enforced at the
outer boundary in order to reproduce the interior field
shown in Fig. 2(a), Fig. 5 shows the solution which results
when V“ c*E = O is applied in the case of Fig. 4(a). The need
for explicit enforcement of a condition on E” ii is not limited
to the geometry of Fig. l(a), but occurs in the problem of
Fig. l(b) under certain circumstances as well. Fig. 6 shows
such a case, for which the desired benchmark solution ap-
pears in Fig, 7. This solution can be retrieved via (5) if, as in
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... . . .... . . . . . . . . . . . ........ . . . . . . ... .. . ..-. -

— = 1.00E+OO = 1.00E+OO

Fig. 5. Same as Fig. 4(a) except that thehomogeneous natural bound-
ary condition V. E*E=O is applied at the outer boundary. This solution
is inconsistent with that of Figs. 4(a) and 2(a). Note the prominent
appearance of anonzero value of E.fi at the outer boundary.

= 1 ook;-oo

Fig. 7. Benchmark solution fortheboundary-value problem

= 1.00E+OO

= 1.00E+OO

_ = 1.00E+OO

— = 1 00E+OO

Fig. 6. FEM calculation using the extended weak form (eq. (5)) and
the homogeneous natural boundary condition V. E*E=O on the off-
center cylinder geometry of Fig. l(b). The resultant solution is inconsis-
tent with the benchmark solution (compare with Fig. 7). The complex
wavenumbers in this case are k~nne, = (0.02,0.0) and k&,C. =
(0.090, 0.178). As in Fig. 5, a nonzero value of E. A is computed at the
outer boundary.

of Fig. 6.

Fig. 8. Benchmark solution for the hybrid problem where the exterior
solution is coupled to the interior solution through a uniform physical
current imposed at the outer boundary. The k2’s on the interior are
identical to those of Fig. 6 while k~X,cri,,r=(0.02,0.0). Note the nonzero
Efi which occursat the outer boundary.
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= 1.00E+OO

_ = 1.00 E+ Of)

Fig. 9. Same as Fig. 8 except that a hybrid calculation using the
extended weak form (eq. (5)) on the interior and the homogeneous
natural boundary condition V.6*E=0 on the outer bounda~ is used.
This solution is consistent with the benchmark solution of Fig. 8.

Fig. 4(a), E” h = O is applied at the outer boundary. The
distinctive feature of the V“ c*E = O solution, when it fails to
reproduce the benchmark, is the appearance of a nonzero
E. i? at the outer boundary. The required enforcement of
E. h = O implies that V“ E*E # O in these cases; i.e., an equiv-
alent charge is necessary to obtain a sohrtion consistent with
the benchmark solution.

It is important to avoid the characterization of the spuri-
ous solutions in Figs. 5 and 6 as vector parasites. In fact, they
reveal subtle and unphysical features of the benchmark
boundary conditions. Since the benchmark E is obtained
from the curl of H, its normal component is guaranteed to
vanish along the prescribed constant-H boundary, irrespec-
tive of the computed interior solution; in effect, E. il = O is
enforced as a Dirichlet boundary condition. In the Appendix
we demonstrate that for an inhomogeneous cylinder, this set
of boundary conditions implies variable current and nonzero

= 1. 130E+()(I

—= 1.OOE+OO

Fig. 10. Benchmark solution for a hybrid problem where a patient
cross section is enclosed by a uniform current imposed at R = 25 cm.
The body is electrically and geometrically complex (see [25]). Vector
plots of Re(E) (top) and Im (E) (bottom) are shown, Vector length is
proportional to strength (max scaled to unity).

charge at the boundary, which can only be deduced in detail
after- the’ interior solution is obtained. ‘As an induction heat-
ing problem, this benchmark itself is, strictly speaking, un-
physical, a solution in search of a source. It is better viewed
simply as a useful boundary value problem with Hz = 1 and
E‘ fi = O. In reproducing this benchmark with a vector calcu-
lation, E ~ii = O is the correct boundary condition, V. e*E = O
might serendipitously produce E. t nearly = O, but in gen-
eral it is wrong and potentially misleading because it corre-
sponds to distinctly different and spurious forcing.

A measure of physical reality is restored to the benchmark
computations through the use of a bounda~ integral expres-
sion for the external field, as in [24]. This removes the
conceptual problems associated with specification of VOts*E”
or E” fi as normal boundary conditions, and instead makes
explicit the assumptions- about the physical source currents
and charges. In the present case, the prescribed uniform
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= 1.OOE+OO = 1.00E+OO

= 1.00E+OO _ = 1.00E+OO

Fig. 11. Same as Fig. 10 except that the conventional double-curl
formulation (2) governs the interior solution. Some significant depar-

tures from the benchmark solution can be seen.

equivalent current (Hz) used to drive the interior problem is
replaced byuniform physical coupling conditions J=l, P=O,
and Hz is now allowed to vary circumferentially around both
sides of the boundary. Figs. 8 and 9 show that the benchmark
and the extended weak form solutions are in excellent agree-
ment for the same dielectric cylinders as in Fig. 6. This
coupled problem is physically different than the boundaty-
value problems in Figs. 6 and 7. The interior solution is in
balance with both the exterior solution and the imposed
physical sources through the electromagnetic jump condi-
tions; the construction of artificial equivalent sources
(boundav conditions) which lump both effects together
a priori is unnecessary. The physical realism is limited only
by the assumed uniformity of p and J on the boundary,
representing a standard idealized device. For a more realistic
device model one could introduce impedance and continuity
relations among p, J, and E on the boundary.

As a final example, we show a realistic calculation in a
patient cross section in hybrid form. The computational

Fig. 12. Same as Fig. 10 except that the extended weak form (5)
governs the interior solution. The calculation is in excellent agreement
with the benchmark solution in Fig. 10.

domain is geometrically complex and contains six electrically
distinct regions. Details of the geometry and the electrical
properties can be found in [25]. The benchmark solution

(Fig. 10) is supplied as well as the corrupted (Fig. 11) and
corruption-free (Fig. 12) solutions. The extended weak form
can be seen to behave admirably in this geometrically and
electrically difficult problem.

IV. CONCLUSIONS

Spurious vector modes occur with destructive strength in
FEM boundary-value problems. The proposed strategy for
their elimination is an expanded weak form which combines
the double-curl and grad-div equations, with no required
constraints on the finite element basis. The expanded weak
form reduces the algebraic double-curl operator to a Galerkin
Laplacian on homogene~ .s subregions, with modifications at
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boundaries to accommodate natural boundary conditions,

Original tangential boundary conditions associated with the
double-curl operator are retained while the grad-div opera-
tor introduces new boundary conditions on the normal field,
The posing of the additional normal boundaw condition
actually demands no extra information. For example, when
Neumann tangential boundary conditions are given, (i.e.,
V X E, or equivalently tangential H), the normal component
of E is known exactly, a priori; hence, a Dirichlet condition
on En is available. Similar arguments can be made when
Dirichlet conditions on tangential E are given [23]. The new
weak form has been implemented on simple Co scalar bases,
which preserves conservation of energy, explicit enforcement
of boundary conditions on both normal and tangential field
components, and coupling to exterior solutions. The new
approach requires only simple extensions to the conventional
double-curl formulation which can be implemented with
minor programming changes in the element assembly.

Computational experiments reveal two types of spurious
modes in driven problems, both of which have been noted
previously in the normal mode context and are predicted in
our dispersion analyses in [23], The first, type A, is well
resolved and has obvious divergence; the second, type B,
appears at or near the mesh cutoff point A = 2A x and is
poorly resolved. Their occurrence is directly related to the
size of k 2Ax 2, with larger values more immune than smaller
ones. In multimedia problems, the size ratio of the k 2‘s is
also important (with values near unity the most spurious-
mode-resistant) whereas their respective phase angles are
less influential. The expanded weak form advocated here
successfully removes both types of modes regardless of the

k2Ax2 sizes, size ratios, or phase angles.
In some cases the homogeneous natural condition V. E*E

= O is inappropriate as a boundary condition, indicating the
need for an equivalent boundary charge to properly repre-
sent the assumed (perhaps unphysical) external field. In
these cases the coupling of the FEM to the external environ-
ment in hybrid fashion allows the use of physically meaning-
ful charges and currents, and makes the physical assump-
tions about the source explicit and unambiguous. These
hybrid solutions exhibit nonzero normal E and extreme care
is required in posing them unambiguously as pure
boundary-value problems, irrespective of the chosen method
of solution. In the examples reported here, both scalar and
vector hybrid computations agreed; however the two bound-
ary value problem solutions did not agree with each other or
with the physically correct hybrid solution, owing to the
nonequivalence of the various sets of boundary conditions.

Experimental attention has been restricted to 2-D; how-
ever our formulation (5) is fully 3-D and we anticipate that
the general conclusions reached here will carry over to 3-D.
We have recently implemented the time-domain equivalent
of (5) in 3-D [25] and have demonstrated 3-D hybrid coupling
with the method of moments [18]. In both instances we have
found the results to be free of spurious fields: Furthermore,
controlled studies aimed at identifying spurious 3-D vector
modes are presently under way,

APPENDIX

Here we demonstrate that variable current J and nonzero
charge p are required to sustain the boundary conditions
Hz =1, En = O on an inhomogeneous cylinder in an infinite
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homogeneous medium. TE conditions are assumed; (n, t) are
the local normal and tangential coordinates in the plane. On
the interior of the cylinder boundary we have, by hypothesis,

Hz=l (Al)

En=O (A2)

and since the cylinder is inhomogeneous, Et will generally be
variable:

E, =f(t). (A3)

Applying the electromagnetic jump conditions, we obtain the
fields on the outside of the boundary source:

Hz=l–.l (A4)

G*En = p (A5)

Et= f(t). (A6)

The Maxwell equation – i@~*E = V X H on the outside of
the boundary gives

13HZ
iw~*Et = — .

dn
iw*f(t) (A7)

8HZ
iw~*En = — — =

at
imp. (A8)

Equation (A7) is sufficient to completely specify H on the
exterio~ since this is a uniform medium with a cylindrical
boundary, we infer that Hz = Hz(t) and that constant HZ on
the exterior is incompatible with (A7) unless $(t) is constant.
From (A4) we conclude in turn that 3 = J(t), and from (A8)
that p # O and En # O on the exterior of the boundary,

The argument fails when ~(t) is constant, i.e.; when Et

does not vary on the interior of the cylinder boundary. In this
case the conditions Hz = 1, En = O are compatible with eon-
stant J and p = O. For nearly homogeneous cylinders this
suggests that p = O is a close approximation to En = O, which
explains the adequacy of p = O observed in some of the test
cases,

[1]

[2]

[3]

[4]

REFERENCES

Z. J. Cendes and P. P. Silvester, “Numerical solution of dielec-
tric loaded waveguides: I—Finite element analysis,” IEEE
Trans. Microwave Theoiy Tech., vol. MTT-18, pp. 1124-1131,
19700
D, G. Corr and J. B. Davies, “Computer analysis of the
fundamental and higher order modes in single and coupled
microstrip,” IEEE Trans. Microwave Theow Tech., vol. MTT-20,
Pp, 669-678, 1972.
A. Konrad, “A method for rendering 3D finite element vector
field solutions non-divergent,” IEEE Trans. Magn. vol. 25, pp.
2822-2824, 1989.
J. A. M. Svedin, “A numerically efficient finite element formu-
lation for the general waveguide problem without spurious



404 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 3, MARCH 1991

modes,” IEEE Trans. Microwave Theory Tech., vol. 37, pp.
1708-1715.1989.

[5] J. B. Davi&, F. A. Fernandez, and G. Y. Philippou, “Finite
element analysis of all modes in cavities with circular
symmetry,” IEEE Trans. Microwave Theoiy Tech., vol. MTT-30,
pp. 1975–1980, 1982.

[6] R. L. Ferrari and G. L. Maile, “Three-dimensional finite
element method for solving electromagnetic field problems,”
Electron. Lett. vol. 14, pp. 467-468, 1978.

[7] A. Konrad, “A direct three-dimensional finite element method
for the solution of electromagnetic fields in cavities,” IEEE
Trans. Magn., vol. MAG-21, pp. 2276-2279, 1985.

[8] C. W. Crowley, P. P. Silvester, and H. Hurwitz, “Covariant
projection elements for 3D vector field problems,” IEEE Trans.
Magn., vol. 24, pp. 397-400, 1988.

[9] A. R. Pinchuk, C. W. Crowley, and P. P. Silvester, “Spurious
solutions to vector diffusion and wave field problems,” IEEE
Trans. Magn., vol. 24, pp. 158-161, 1988.

[101 S. H. Won~ and Z. J. Cendes. “Combined finite element-modal
solution or three-dimensional eddy current uroblems,” IEEE

[11]

[12]

[13]

[14]

Trans. Magn., vol. 24, pp. 2685-2687, 1988. -
S. H. Wong and Z. J. Cendes, “Numerically stable finite
element methods for Galerkin solution of eddy current prob-
lems,” IEEE Trans. Magn., vol. 25, pp. 3019-3021, 1989.
D. R. Lynch, K. D. Paulsen, and J. W. Strohbehn, “Finite
element solution of Maxwell’s equations for hyperthermia
treatment planning,” J. Computat. Phys., vol. 58, pp. 246–269,
1985.
K. D. Paulsen, D. R. Lynch, and J. W. Strohbehn, “Three-
dimensional finite, boundary, and hybrid element solutions of
the Maxwell equations for lossy dielectric media,” IEEE Trans.
Microwave Theoiy Tech., vol. 36, pp. 682-693, 1988.
C. W. Crowley and P. P. Silvester, “Comments on three-dimen-
sional finite, boundary, and hybrid element solutions of the
Maxwell equations for Iossy dielectric media,” IEEE Trans.
Microwaue Theory Tech., vol. 36, p. 145, 1988.

[15] M. L. Barton and Z. J. Cendes, “New vector finite elements for
three-dimensional magnetic field computation,” J. Appl. Phys.,
vol. 61, pp. 3919–3921, 1987.

[16] A. F. Peterson, “Finite element solution of the vector wave
equation using divergencelss basis function,” in Proc. 1989
IEEE AP-S Znt. Symp., vol. III, pp. 1624-1627.

[17] A. Bossavit, “Solving Maxwell equations in a closed cavity and
the question of spurious modes,; IEEE Trans. Magn., vol. 25,
rm. 702–705. 1990.

[18] X. Yuan, D. R. Lynch, and K. D. Paulsen, “Importance of
normal field continuity in inhomogeneous scattering calcula-
tions,” IEEE Trans. Microwave Theoiy Tech., to be published.

[19] B. M. A. Rahman and J. B. Davies, “Penalty function improve-
ment of waveguide solution by finite elements,” IEEE Trans.
Microwave Theory Tech., vol. MTT-32, pp. 922-928, 1984.

[20] M. Koshiba, K. Hayata, and M. Suzuki, “Finite element formu-
lation in terms of the electric field vector for electromagnetic
waveguide problems,” IEEE Trans. Microwaue Theory Tech.,
VO1.MTT-30, pp. 900–905, 1985.

[21] J. P. Webb, “The finite element method for finding modes of
dielectric loaded cavities,” IEEE Trans. Microwave Theory
Tech., vol. MTT-33, pp. 635-639, 1985.

[22] A. Konrad, “On the reduction of the number of spurious
modes in the vectorial finite-element solution of three-dimen-
sional cavities and waveguides,” IEEE Trans. ~icrowaue The-
ory Tech., vol. MTT-34, pp. 224–227, 1986.

[23] D. R. pynch and K. D. Paulsen, “Origin of vector parasites in

‘umerlcal M~ell solutions,” PP. 383–394, this issue.
[24] D. R. Lynch, K. D. Paulsen, and J. W. Strohbehn, “Hybrid

element method for unbounded problems in hyperthermia,”
Int. J. Numer. Meth. Eng. vol. 23, pp. 1915-1937, 1986.

[25] D. R. Lynch and K. D. Paulsen, “Time-domain integration of
the Maxwell equations on finite elements,” IEEE Trans. An-
tennas Propagat., vol. 38, pp. 1933–1942, Dec. 1990.

83

Keith D. Paulsen (S’85–M’86) received the
B.S. degree in biomedical engineering from
Duke University, Durham, NC, in 1981, and
the M.S. and Ph.D. degrees in engineering
from Dartmouth College, Hanover, NH, in
1984 and 1986, respectively.

He is currently an Assistant Professor in
the Thayer School of Engineering at Dart-
mouth College. His research interests include
numerical electromagnetic with application
to biomedical problems.

H3

Daniel R. Lynch received the B.S. and M.S.
degrees in mechanical engineering from the
Massachusetts Institute of Technology, Cam-
bridge, in 1972 and the M.S. and Ph.D. de-
grees in civil engineering from Princeton
University, Princeton, NJ, in 1976 and 1978,
respectively.

He has worked as a power engineer and
biomedical engineer, and he is currently Pro-
fessor at Dartmouth College’s Thayer School
of Engineering, where he has taught since

1978. His interests are in environmental engineering and ;umerical
analysis.


