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Elimination of Vector Parasites in Finite
Element Maxwell Solutions

Keith D. Paulsen, Member, IEEE, and Daniel R. Lynch

Abstract —The vector parasite problem is studied in the context of
finite element solutions of Maxwell’s equations for driven boundary-value
problems. An expanded weak form is introduced which combines the
divergence equation with the conventional weak form of the double-curl
equation. This new form is related to penalty methods where the penalty
or weighting factor varies with the dielectric constant. The resulting
algebraic system is identical to the Galerkin—Helmholtz operator on
homogeneous subregions. Normal and tangential boundary conditions
arise in terms of the divergence and curl of the field on the boundary.

Computational results show the occurrence of two distinct types of
parasitic modes in driven problems and their elimination with the new
formulation. Practical observations concerning the conditions which
provoke spurious modes in these problems are reported.

Spurious solutions also arise from improper or unphysical boundary
conditions, and the importance of careful specification of boundary-value
problems is illustrated. Most conceptual difficulties with boundary con-
ditions per se are removed when hybrid methods are used to couple the
interior finite element solution to the exterior problem, which focuses
attention on the physics of the source distribution.

I. INTRODUCTION

HE occurrence of spurious computational modes in fi-
nite element (FEM) vector wave equation solutions has
been known for some time [1], [2] and suppression of such
erroneous calculations is still a subject of great interest [3],
[4]. The majority of research to date on parasitic modes has
been in the context of eigenvalue problems; hence, the
notion of computing nonphysical solutions has been closely
tied to modal analysis. The most consistently noted feature
of these fictitious solutions has been their divergent nature
in cases where the physical solution is completely solenoidal.
Additional vector parasites have been reported with wave-
lengths at or near the mesh scale [5]. ‘
Reports of spurious solutions in vector boundary-value
problems, on the other hand, have been sparse; thus FEM
formulations for driven problems have largely,K been per-
ceived to be free of these computational difficulties. In fact,
this presumed immunity of driven problems has been sug-
gested as a possible remedy to the eigenvalue dilemma [6],
[7]. Recently, however, Crowley et al. [8], Pinchuk et al. [9},
and Wong and Cendes [10], [11] have shown that careful
selection of the forcing term can lead to completely erro-
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neous double-curl FEM computations for some simple
boundary value problems. Although our earlier double-curl
FEM computations [12], [13] did not reveal any degradations
that could be attributable to nonphysical solutions, the in-
sightful comments by Crowley and Silvester [14] plus the
general lack of studies on spurious vector components of
FEM solutions to boundary-value problems have motivated
us to investigate this issue more closely.

The traditional approaches to removing spurious vector
modes have been classified as (1) those which modify the
FEM basis and (2) those which modify the FEM functional
or weak form. Examples of modifications of the basis can be
found in 8], [15], and [16]. Several strategies exist including
forcing the basis to have exactly zero divergence. To achieve
zero divergence, special care is required to guarantee the
continuity of A-e*E at interelement boundaries as well as on
element interiors. Otherwise the divergence of the basis
vanishes at best in the weak sense as is the case for “edge
elements” [17]. We have investigated the importance of
normal field continuity in inhomogeneous calculations [18]
and have concluded that strong enforcement (as can be
achieved with the bases used here) produces solutions with
improved accuracy, especially near dielectric interfaces, rela-
tive to those produced with edge elements.

Modification of the FEM functional in order to remove
spurious solutions has been associated with the so-called
penalty method [19], [20]. In the present context, this amounts
to adding a weighted divergence equation V-e*E =0 to the
double-curl equation. In weighted residual or variational
formulations the cost of divergence is then “penalized” by
using a large weight. In terms of the spectrum of the dis-
cretized matrix equation, the penalty factor is perceived to
shift the eigenvalues out of the range of interest [21}, [22],
thus eliminating the effects of divergent modes. The key to
success with the penalty method has been in the choice of
the correct penalty factor—values too small or too large
cause (or do not eliminate) unacceptable results. Unfortu-
nately, the choice of a suitable penalty factor has tended to
be problem-specific and no systematic approach or rationale
for selecting this parameter for general problems has been
put forth to date.. ,

The strategy that we propose for eliminating spurious
computational modes in vector FEM boundary-value prob-
lems is to modify the weak form of the governing vector
equation in a manner closely related to the penalty term
alteration discussed above. However, rather than leaving the
penalty factor arbitrary and problem-dependent, we pre-
scribe a weak form which in effect reduces the algebraic
double-curl operator to a Laplacian on homogeneous subre-
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gions. We have demonstrated the importance of the resulting

Helmholtz structure by analyzing 2-D dispersion relations
arising from both finite-difference and finite element dis-
cretizations of the Maxwell equations on homogeneous, regu-
lar meshes. As we show in [23] the Helmholtz algebra has
monotonic dispersion curves which mimic their analytic
counterparts such that proper specification of physical
boundary conditions ensures suppression of spurious “diver-
gence”’ modes whereas the double-curl and penalty algebras
have double-valued dispersion surfaces such that the synthe-
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physical sources exist, (1/iwp)f X(V X E), or equivalently
i X H, is continuous and therefore the boundary integral
vanishes; while at sources on the interior, the discontinuity in
fi X H is replaced by physical current J. At outer boundary
nodes, either the exterior solution must be coupled to # X H
or else the problem terminated as a boundary value problem
by specification of i X E, # X H, or an equivalent current.

Expansion of (2) in the basis ¢, leads to the Galerkin weak
form A;;E; = R;, in which 4 comprises complex 3 X 3 subma-
trices

~

(e sme)) (Lo gty
iop \ dy dy dz dz iop dx dy iopw Ix 9z

+{iwe*,;p;)

< 1 a¢, a¢,> L (3,08, d9; 39, 1 3¢, 94,
A= T iep dy ox <z—aﬂ(§3x_ 9z 6z)> < iop 3y az> (3)

+(iwe*d,¢;)
L ¢, 9¢; 1 d¢; 3¢, 1 (d¢; 3(15 9, 3¢
< ilop 9z 6x> <_E¥E)y> <tw/.:,(8x dx  dy —a~y~)>
’ +<iwe*¢,~¢j>

sis of physical and spurious modes is unavoidable in prob-
lems driven by physically correct boundary conditions.

Herein, we qualitatively confirm these idealized dispersion
analyses in the practical context of computing FEM solutions
to inhomogeneous boundary-value problems on irregular ge-
ometries. Specifically, we demonstrate the presence of the
two predicted vector parasites [23] in our original formula-
tion {12] and their removal with the proposed weak-form
modification. In addition we illustrate the introduction of
spurious solutions through improperly posed boundary con-
ditions, which in subtle ways can dictate unphysical behavior
by themselves.

II. Tue ExpANDED WEAK FORM

Our original formulation for vector boundary-value FEM
solutions [12] proceeds directly from the double-curl equa-
tion

1
—VXE|+iwe*E=0 (1

VX(
iwp

for the electric field, where €* =€ +io/w is the complex
permittivity. The weak form of (1) which we have used is

1
<(,_v><E
iop

) X V¢,> +{iwe*Ed;>

1
—9Smn X(VXE)¢;ds (2)

where {( ) and ¢ indicate integration over the problem
domain and boundary, respectively, and &, are the conven-
tional linear or bilinear basis functions associated with scalar
FEM formulations. At interior element boundaries where no

Note that the double-curl identity VXV X E=—V2E +
V(V-E) is commonly invoked along with the condition V- E
=0 to convert (1) to the Helmholtz equation on homoge-
neous regions; however, the derived algebraic form (3) lacks
the crucial divergence information and therefore does not
display the conventional Galerkin—-Helmholtz structure.

The modified weak form introduced here is based on the

expanded PDE
1
) V( - *V-e*E)+iwe*E=0. (4a)
iope

1
—VXE
ioy

The spatial discretization is handled by using the method of

weighted residuals:
1
<¢,V><(,_V><E)>_<¢,,v(. VE)>
i lwue
+(iwe*E¢,) =0 (4b)

wp
where { ), ¢, and ¢; are defined as in (2). Use of the
identities
1 1
SV X[V E| ) =i x ,—VxE)d;,ds
lop iou
1
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leads to the associated weak form:

<;(V><E)><V¢,>+< - !
o oy

vy
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assuming continuity of V-€*E at interior element bound-
aries. Note that the weak form (2) displays only V X E as the
natural boundary condition; ideally the double-curl equation
guarantees the condition V- E = 0, although as demonstrated
here and in [23] this is not realized numerically due to
parasites. The expanded weak form (5) displays both VX E
and V- e*E as natural boundary conditions. As will be shown
in the following sections, the process of specifying boundary
conditions for (5) involves only physical reasoning whereas
the use of (2) relies on the removal of unpredictable spurious
behavior which depends fundamentally on the mesh spacing.

Adopting a Galerkin-style expansion for E in terms of the
scalar basis ¢; as above produces the same algebraic form
A;;E, = R; with A,; modified as

d; dd;

1 d; 9¢; 1
—_— + —_—— —
iop \ dy dy dz 9z iop

+ — 89; 94 )>+< iwe*d, cb])

dx dx
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it X V¢p; will be zero on the exterior boundary). It follows
that the off-diagonal terms in A, vanish unless both i and j
are boundary nodes. In effect, the expanded weak form (5)
produces a Galerkin—Helmholtz algebraic form on the inte-
rior:
1
A= < — V¢V, + iwe*¢i¢j>l (10)
iop

with modifications at the boundaries as expressed in (5)
which allow the curl and divergence of the field to appear as
natural boundary conditions.

When numerical quadrature is used, the curl theorem
does not apply exactly; nevertheless we obtain the analogous

0 0¢;
T dy.
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Alone, the diagonal terms of (6) may be recognized as a
conventional Galerkin rendering of the Helmholtz equation result
for the three scalar components of E, separately. Further, [V¢,~ X Vq&j] =¢ﬁ X (¢ Ve,)ds + & (11)

the off-diagonal terms vanish on the interior of homoge-
neous subregions, leaving only the Helmholtz operator which
has the spurious-mode-resistant properties detailed in [23].
This can be seen as follows. First, note that the off-diagonals
are the components of {(V¢; X V¢ j). The contribution to this
integral over a single element, { ), may be integrated by
parts as follows:

(Ve x ¥,y =( ¥ x (696,)) ~{ (VX V8,)$,)". (7)

The integrand of the last term vanishes identically at all
points on the.interior of conventional elements. The surviv-
ing right-side term may be converted to a boundary integral
by the curl theorem, the result of which is

(8)

For conventional C® elements, both ¢, and its tangential
derivatives are continuous at interior element boundaries;
therefore on assembly (summation over all elements) only
the integrals on exterior boundary segments survive cancella-
tion:

(Vg X V) = 7 x ($¥4,) ds.

©

Inspection of (9) reveals that the boundary integral vanishes
if either node i or j is an interior node (since either ¢; or

(Ve X V) = i X ($V;) ds.

where [ ] is the quadrature approximation to ¢ ), and &, is
the quadrature error:

&=V x(s90)] —(Vx(¢94;)).  (12)

Irrespective of quadrature, all row and column sums of the
off-diagonal terms in 4;; vanish, a consequence of the prop-
erty L¢, =1 which holds at all points in simple elements.

Finally, we obtain the discrete energy balance as in [12] by
multlplylng (5) by E, (complex conjugate of E;) and sum-
ming. The result is

< (V-eE)VE) |

2iome*

(VXE)(VXE)  EE
2iwm 2 >

+iwe

ExXH (V-¢*E)E-h

-¢( ) w+§ s

The real part of (13) corresponding to the time-averaged
component of the power balance is
ds) =0,

E‘E EXH\ (V-e*E)E-h
<a—2——>+Re (¢(——2 )'nds +¢—-—————2in€*
: (14)

This is unchanged from its original form when either V:€*E
or E-# vanishes on the boundary. Additional terms appear

(13)
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Fig. 1. (a) A cylinder (R = 25 cm) split into two regions having differ-
ent complex wavenumbers. The computational FEM mesh is shown. (b)
A smaller off-center cylinder (a2 =10 cm) embedded in a larger cylinder

(R =25 cm). Different complex wavenumbers are used to characterize
the two regions. The computational FEM mesh is shown.

in the imaginary part of (13) (the reactive power balance) as
follows:’

(V-e*E)(V-E) (VXE)(VXE) E'E
2oupe* 20um ve 2
EXH)\ | (V'"e*E)E-ii |
—Im(¢(——2— 'nds—¢———m———ds =0, (15)

III. ResuLTs

This section contains results for 2-D boundary-value and
hybrid problems where spurious solutions appear when (2) is
used, but are removed in the case where (5) governs. Code
validations of our earlier formulation involved a test problem
consisting of concentric cylinders of dissimilar media excited
with a uniform H imposed at the outer boundary. While we
have yet to find any parasitic solutions with our original
formulation in this case, it is a simple boundary-value prob-
lem which involves only one radial mode and, in the termi-
nology of Crowley and Silvester [14], such an excitation is
probably orthogonal to potentially spurious modes; hence
they may not appear as our numerical experiments, to date,
have confirmed.

Two variants on this geometry, shown in Fig. 1, are now
studied. As before, a uniform H is imposed at the outer
cylinder boundary, but these geometries, in general, excite
all radial and circumferential modes; hence they are better
benchmark problems for studying corrupted solutions. Fur-
ther, by examining a wide range of electrical properties in
the two regions, the effects of exciting various weighted
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Fig. 2. (a) Benchmark solution for the split cylinder case (Fig. 1(a))
where k%, =(2.08,20.53) and k3,om = (0.074,0.0). Vector plots of
Re(E) (top) and Im(E) (bottom) are shown. Vector length is propor-
tional to strength (max scaled to unity). (b) Benchmark solution for the
off-center cylinder case (Fig. 1(b)) where k%, =(2000,0.0) and k3.,
=(196.1,39.22). Vector plots of Re(E) (top) and Im(E) (bottom) are
shown. Vector length is proportional to strength (max scaled to unity).

combinations of the modes can be investigated. Because the
geometries are not amenable to analytical boundary-value
solution, a reference standard is derived by first numerically
solving for H, followed by subsequent Galerkin treatment of
VX H=—iwe*E to produce E [24]. Since H is computed
with a scalar Helmholtz equation, it can be presumed free of
spurious modes of the type investigated herein. Further, E is
obtained by curling the H solution, which also guarantees
that no irrotational components will exist; hence, computa-
tion of E in this fashion can be regarded as only limited in
its accuracy by the resolution of the mesh.

Parts (a) and (b) of Fig. 2 show sample solutions of E
computed in this “benchmark” manner on the geometries in
Fig. 1(a) and (b), respectively. When (2) is used, however, the
FEM solution can be severely corrupted. The spurious solu-
tions shown in Fig. 3 are representative of some of the more
shocking results that we -have obtained solving (2) on the
geometries in Fig. 1. The solutions in Fig. 3 illustrate the
occurrence of two apparently different types of parasites.
The first, shown in Fig. 3(a), is well resolved and exhibits
distinct divergence. The second, shown in Fig. 3(b), appears
as node-to-node oscillations at the mesh scale, suggesting the
presence of unresolved waves at or near the mesh cutoff
point (i.e., A = 2Ax). These two classes of parasitic solutions
are consistent with those reported by others in the eigen-
value problem context [5] and in a companion paper [23]
have been referred to as type A (i.e., Fig. 3(a)) and type B
(i.e., Fig. 3(b)), respectively.
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Fig. 3. (a) Same as Fig. 2(a) except that FEM solution using the
. conventional double-curl formulation (eq. (2)) governs. The observed
. parasite is well resolved and shows clear divergent behavior. (b) Same as
Fig. 2(b) except that FEM solution using the conventional double-curl
_formulation (eq. (2)) governs. The observed parasite is poorly resolved,
showing node-to-node oscillations.

The factors which appear to determine the severity of the
corruptions in FEM solutions via (2) are the magnitude and
phase of the complex-valued wavenumbers of the respective
media and the size of their ratio. An extensive search of the

parameter space has been conducted where the ranges over -

which these factors have been varied are |k2Ax2=10"% >
0.5, o /we =020, and |k?|outer / |k ?linner = 0.1 = 10. Gen-
erally, the most prognostic indicator has been the magnitude;
however, the size ratio is also important. If |k?|Ax?> 0.02
and the size ratio is near unity (|4 %|outer / | %linner = 0.5 = 2),
spurious solutions are less likely to be computed with (2) and
. their occurrence is essentially independent of the phase
angles of the k?’s. However, the smaller/larger the magni-
tudes of k?Ax?, the tighter/looser the restrictions become
on size ratio in order to maintain insensitivity to phase. For
example, if |k2|Ax? = 0,005, a size ratio of unity is needed.

When the size ratio is broadened (e.g. |k %|outer / 1k %linner = 5),

a reduction in spurious-effects is observed as the phase angle
is increased (removal or near removal requiring o /we > 1)
provided the magnitude requirements are met. In the limit of
size ratio approaching unity and a vanishingly small phase

angle, the geometry collapses to a homogeneous region which -

excites a single mode that is apparently orthogonal to the
parasitic modes. While it is important to recognize that these
observations ate strictly problem-dependent, they have obvi-
ous practical relevance dand qualitatively agréee with the ideal-
ized dispersion analyses of real-valued wavenumbers pre-
sented in [23].
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Fig: 4. (a) Same as Fig. 2(a) except that FEM solution using the
extended weak form (eq. (5)) governs. The well-resolved divergent
parasite of Fig. 3(a) is removed. E-# =0 is explicitly enforced at the
outer boundary. The solution is essentially identical to the benchmark
solution of Fig. 2(a). (b) Same as Fig. 2(b) except that FEM solution
using the extended weak form (eq. (5)) governs. The node-to-node
oscillatory parasite of Fig. 3(b) is removed. The homogeneous natural
boundary condition V-e¢*E = 0 is applied at the outer boundary. The
solution is essentially identical to the benchmark solution of Fig. 2(b).

Fortunately, desirable behavior results from the use of the:
extended weak form (5) regardless of whether parasitic solu-
tions arise in (2) or not; hence, one need not fully character-
ize the occurrence of corruptions in (2) with respect to
parameter space, k?Ax2. Since parasites can be found to
occur in (2) for some boundary-value problems, its general
use is suspect and the extended form (5) is always preferable.
As shown in Fig. 4, the use of the extended weak form
effectively eliminates both types of corruptions observed in
Fig. 3, and the direct vector E solution now agrees with the
parasite-free calculations of Fig. 2. This removal of parasitic
solutions consistently occurred by invoking (5) for all of the .
combinations of parameters that we have investigated to
date.

It is interesting to note that in Fig. 4(b) the homogeneous
natural boundary condition V- e*E = 0 is applied, whereas in
Fig. 4(a) this is insufficient. to produce the desired solution

-and a stronger condition, E-A =0, must be enforced at the

outer boundary in order to reproduce the interior field
shown in Fig. 2(a). Fig. 5 shows the solution which results
when V- e*E = 0 is applied in the case of Fig. 4(a). The need
for explicit enforcement of a condition on E-#A is not limited
to the geometry of Fig. 1(a), but occurs in the problem of
Fig. 1(b) under certain circumstances as well. Fig. 6 shows
such a case, for which the desired benchmark solution ap-
pears in Fig. 7. This solution can be retrieved via (5) if, as in
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Fig. 5. Same as Fig. 4(a) except that the homogeneous natural bound- Fig
ary condition V-€*E = 0 is applied at the outer boundary. This solution
is inconsistent with that of Figs. 4(a) and 2(a). Note the prominent
appearance of a nonzero value of E- 7 at the outer boundary.
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Fig. 6. FEM calculation using the extended weak form (eq. (5)) and
the homogeneous natural boundary condition V-€*E =0 on the off-
center cylinder geometry of Fig. 1(b). The resultant solution is inconsis- Fig. 8. Benchmark solution for the hybrid problem where the exterior
tent with the benchmark solution (compare with Fig. 7). The complex solution is coupled to the interior solution through a uniform physical
wavenumbers in this case are ki, =(0.02,00) and k3, = current imposed at the outer boundary. The k%’s on the interior are
(0.090,0.178). As in Fig. 5, a nonzero value of E-# is computed at the identical to those of Fig. 6 while k2 =(0.02,0.0). Note the nonzero

o 0 exterior
outer boundary. E - n which occurs at the outer boundary.
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Fig. 9. Same as Fig. 8 except that a hybrid calculation using the
extended weak form (eq. (5)) on the interior and the homogeneous
natural boundary condition V-€*E =0 on the outer boundary is used.
This solution is consistent with the benchmark solution of Fig. 8.

Fig. 4(a), E-# =0 is applied at the outer boundary. The
distinctive feature of the V-e*E = 0 solution, when it fails to
reproduce the benchmark, is the appearance of a nonzero
E-fii at the outer boundary. The required enforcement of
E- 7 =0 implies that V-¢*E # 0 in these cases; i.e., an equiv-
alent charge is necessary to obtain a solution consistent with
the benchmark solution.

It is important to avoid the characterization of the spuri-
ous solutions in Figs. 5 and 6 as vector parasites. In fact, they
reveal subtle and unphysical features of the benchmark
boundary conditions. Since the benchmark E is obtained
from the curl of H, its normal component is guaranteed to
vanish along the prescribed constant-H boundary, irrespec-
tive of the computed intérior solution; in effect, E-A=0 is
enforced as a Dirichlet boundary condition. In the Appendix
we demonstrate that for an inhomogeneous cylinder, this set
of boundary conditions implies variable current and nonzero

401
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Fig. 10. Benchmark solution for a hybrid problem where a patient
cross section is enclosed by a uniform current imposed at R =25 cm.
The body is electrically and geometrically complex. (see [25]). Vector
plots of Re(E) (top) and Im(E) (bottom) are shown. Vector length is
proportional to strength (max scaled to unity).

charge at the boundary, which can only be deduced in detail
after the interior solution is obtained. As an induction heat-
ing problem, this benchmark itself is, strictly speaking, un-
physical, a solution in search of a source. It is better viewed
simply as a useful boundary value problem with H, =1 and
E 7 =0. In reproducing this benchmark with a vector calcu-

lation, E-# = 0 is the correct boundary condition. V-e*E =0

might serendipitously produce E-n nearly = 0, but in gen-
eral it is wrong and potentially misleading because it corre-
sponds to distinctly different and spurious forcing.

-~ A measure of physical reality is restored to the benchmark
computations through the use of a boundary integral expres-
ston for the external field, as in [24]. This removes the
conceptual problems associated with specification of V-e*E

‘or E-# as normal boundary conditions, and instead makes

explicit the assumptions- about the physical source currents
and charges. In the present case, the prescribed uniform
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Fig. 11. Same as Fig. 10 except that the conventional double-curl
formulation (2) governs the interior solution. Some significant depar-
tures from the benchmark solution can be seen.

equivalent current (H,) used to drive the interior problem is
replaced by uniform physical coupling conditions J=1, p =0,
and H, is now allowed to vary circumferentially around both
sides of the boundary. Figs. 8 and 9 show that the benchmark
and the extended weak form solutions are in excellent agree-
ment for the same dielectric cylinders as in Fig. 6. This
coupled problem is physically different than the boundary-
value problems in Figs. 6 and 7. The interior solution is in
balance with both the exterior solution and the imposed
physical sources through the electromagnetic jump condi-
tions; the construction of artificial equivalent sources
(boundary conditions) which lump both effects together
a priori is unnecessary. The physical realism is limited only
by the assumed uniformity of p and J on the boundary,
representing a standard idealized device. For a more realistic

device model one could introduce impedance and continuity

relations among p, J, and E on the boundary.
As a final example, we show a realistic calculation in a
patient cross section in hybrid form. The computational

Fig. 12. Same as Fig. 10 except that the extended weak form (5)
governs the interior solution. The calculation is in excellent agreement
with the benchmark solution in Fig. 10.

domain is geometrically complex and contains six electrically
distinct regions. Details of the geometry and the electrical
properties can be found in [25]. The benchmark solution
(Fig. 10) is supplied as well as the corrupted (Fig. 11) and
corruption-free (Fig. 12) solutions. The extended weak form
can be seen to behave admirably in this geometrically and
electrically difficult problem.

IV. CoONCLUSIONS

Spurious vector modes occur with destructive strength in
FEM boundary-value problems. The proposed strategy for
their elimination is an expanded weak form which combines
the double-curl and grad-div equations, with no required
constraints on the finite element basis. The expanded weak
form reduces the algebraic double-curl operator to a Galerkin
Laplacian on homogenec::s subregions, with modifications at

\
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boundaries to accommodate natural boundary conditions.
Original tangential boundary conditions associated with the
double-curl operator are retained while the grad—div opera-
tor introduces new boundary conditions on the normal field.
The posing of the additional normal boundary condition
actually demands no extra information. For example, when
Neumann' tangential boundary conditions are given, (i.e.,
V X E, or equivalently tangential H), the normal component
of E is known exactly, a priori; hence, a Dirichlet condition
on E, is available. Similar arguments can be made when
Dirichlet conditions on tangential E are given [23]. The new
weak form has been implemented on simple C? scalar bases,
which preserves conservation of energy, explicit enforcement
of boundary conditions on both normal and tangential field

components, and coupling to exterior solutions. The new

approach requires only simple extensions to the conventional
double-curl formulation which can be implemented with
minor programming changes in the element assembly.

Computational experiments reveal two types of spurious
modes in driven problems, both of which have been noted
previously in the normal mode context and are predicted in
our dispersion analyses in [23]. The first, type ‘A, is well
resolved and has obvious divergence; the second, type B,
appears at or near the mesh cutoff point A =2Ax and is
poorly resolved. Their occurrence is directly related to the
size of k?Ax?, with larger values more immune than smaller
ones. In multimedia problems, the size ratio of the k?’s is
also important (with values near unity the most spurious-
mode-resistant) whereas their respective phase angles are
less influential. The expanded weak form advocated here
successfully removes both types of modes regardless of the
k?Ax? sizes, size ratios, or phase angles.

In some cases the homogeneous natural condition V- e*E
=0 is inappropriate as a boundary condition, indicating the
need for an equivalent boundary charge to properly repre-
sent the assumed (perhaps unphysical) external field. In
these cases the coupling of the FEM to the external environ-
ment in hybrid fashion allows the use of physically meaning-
ful charges and currents, and makes the physical assump-
tions about the source explicit and unambiguous. These
hybrid solutions exhibit nonzero normal E and extreme care
is required in posing them unambiguously as pure
boundary-value problems, irrespective of the chosen method
of solution. In the examples reported here, both scalar and
vector hybrid computations agreed; however the two bound-
ary value problem solutions did not agree with each other or
with the physically correct hybrid solution, owing to the
nonequivalence of the various sets of boundary conditions.

Experimental attention has been restricted to 2-D; how-
ever our formulation (5) is fully 3-D and we anticipate that
the general conclusions reached here will carry over to 3-D.
We have recently implemented the time-domain equivalent
of (5) in 3-D [25] and have demonstrated 3-D hybrid coupling
with the method of moments [18]. In both instances we have
found the results to be free of spurious fields. Furthermore,
controlled studies aimed at identifying spurious 3-D vector
modes are presently under way.

APPENDIX

Here we demonstrate that variable current J and nonzero
charge p are required to sustain the boundary conditions
H,=1, E, =0 on an inhomogeneous cylinder in an infinite
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homogeneous medium. TE conditions are assumed; (n, ¢) are
the local normal and tangential coordinates in the plane. On
the interior of the cylinder boundary we have, by hypothesis,

(A1)
(A2)

and since the cylinder is inhomogeneous, E, will generally be
variable:

E =f(1). (A3)

Applying the electromagnetic jump conditions, we obtain the
fields on the outside of the boundary source:

H=1-7 (A4)
E,=p (A5)
E = f(t) (A6)

The Maxwell equation —iwe*E =V X H on the outside of
the boundary gives

. aHZ

lwe*Et=-5n— =iwe*f(t) (A7)
. aHZ

iwe*E, = — rrale iwp. (A8)

Equation (A7) is sufficient to completely specify H on the
exterior; since this is a uniform medium with a cylindrical
boundary, we infer that H, = H,(¢) and that constant H, on
the exterior is incompatible with (A7) unless f(¢) is constant.
From (A4) we conclude in turn that J = J(¢), and from (A8)
that p# 0 and E, # 0 on the exterior of the boundary.

The argument fails when f(¢) is constant, i.e, when E,
does not vary on the interior of the cylinder boundary. In this
case the conditions H, =1, E, =0 are compatible with con-
stant J and p = 0. For nearly homogeneous cylinders this
suggests that p = 0 is a close approximation to E, = 0, which
explains the adequacy of p =0 observed in some of the test
cases.
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